Poliedros

Afirmar que poliedro são sólidos formados por faces (partes limitadas de um plano), pode dar uma ideia do que eles sejam, mas não serve absolutamente como definição; aliás, uma das grandes dificuldades para o desenvolvimento desse tema, bem como fazer demonstrações dos teoremas sobre poliedros, estava justamente na falta de uma definição precisa do significado dessa palavra.

Definição

A seguinte definição nos dá uma idéia do que é poliedro, então definiremos assim:

Poliedro é uma reunião de um número finito de polígonos planos, onde cada lado de um desses polígonos é também lado de um, e apenas um, outro polígono”.

Vejam os seguintes exemplos:

OBS: Podemos também encontrar como definição para poliedros, o seguinte: É um sólido limitado por polígonos, que tem, dois a dois, um lado comum.

Cada poliedro é formado pela reunião de um número finito de regiões poligonais planas, chamadas de faces. Cada lado de uma região poligonal, comum a exatamente duas faces, é chamada aresta do poliedro. E cada vértice de uma face é um vértice do poliedro. Veja:

Fig. 01

Poliedro convexo e Poliedro não-convexo

Observe as figuras abaixo:

Qual dessas figuras você classificaria como poliedro convexo e como poliedro não convexo?

A resposta para essa indagação fica mais fácil quando temos conhecimento de que:

“Um poliedro é convexo se qualquer reta (não paralela a nenhuma de suas faces) o corta em, no máximo, dois pontos”.

Logo, podemos concluir, que o poliedro convexo está representado pela figura 02, e a figura 03 é um exemplo de poliedro não-convexo.

Teorema de Euler

O matemático suíço Leonhard Euler (1707 – 1783) descobriu uma importante relação entre o número de vértice (V), o número de aresta (A) e o número de faces (F) de um poliedro convexo.

O teorema de Euler foi descoberto em 1758. Desde então diversas demonstrações apareceram na literatura e algumas continham falhas (como a de Cauchy), que foram descobertas muitos anos mais tarde. Essas falhas eram devidas à falta de precisão na definição de poliedro. Mesmo Euler nunca se preocupou em definir precisamente essa palavra.

Em todo poliedro com A arestas, V vértices e F faces, vale a relação:

V - A + F = 2

Exercícios Resolvidos

1º) Arquimedes descobriu um poliedro convexo formado por 12 faces pentagonais e 20 faces hexagonais, todas regulares. Esse poliedro inspirou a fabricação da bola de futebol que apareceu pela primeira vez na Copa do Mundo de 1970. Quantos vértices possui esse poliedro?

Resolução:

Como o poliedro tem 12 faces pentagonais, então:

12 . 5  = 60

O poliedro tem 20 faces hexagonais, assim 20 . 6  = 120, logo:  F = 12 + 20 = 32

Cada aresta foi contada duas vezes, portanto temos:

2A = 60 + 120
A = 90

Como o poliedro é convexo, vale a relação de Euler,

V – A + F = 2, portanto:

V – 90 + 32 =2
V = 2 + 90 – 32
V = 60

Assim, o número de vértices é 60.

2º) Determinar o número de arestas e o número de vértices de um poliedro convexo com 6 faces quadrangulares e 4 faces triangulares.

Resolução:

Como o poliedro tem 6 faces quadrangulares, calculamos: 6 . 4 = 24

O poliedro tem 4 faces triangulares: 4 . 3 = 12

Como cada aresta foi contada duas vezes, o número total de arestas é:  A = (24+12)/2 = 18

Temos então F  = 10, A = 18.

Aplicando a relação de Euler:

V – A + F = 2
V – 18 + 10 = 2
V = 10

Logo, o poliedro tem 18 arestas e 10 vértices.

Exercícios para praticar

1º) Determine o número de vértices de um poliedro convexo que tem três faces triangulares, uma face quadrangular, uma face pentagonal e duas faces hexagonais.

2º) (PUC –SP) O número de vértices de um poliedro convexo que possui 12 faces triangulares é:

a) 4                  b) 12                c) 10                d) 6                  e) 8

Referências Bibliográficas:
DANTE,Luiz Roberto. Matemática, volume único. São Paulo: Editora Ática, 2005.
Lima, Elon Lages; Carvalho, Paulo Cezar Pinto; Wagner Eduardo; Morgado Augusto Cesar. Matemática do Ensino Médio, Volume 2.Rio de Janeiro: Editora Sociedade Brasileira de Matemática.

Arquivado em: Geometria Espacial